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Abstract The N -Representability Problem entails characterizing the set of second
order reduced states that are contractions of N-electron states of the Fermion Fock alge-
bra. This problem is formulated in the form of finding the conditions that a positive
linear functional defined on a subspace of this algebra must satisfy in order to be
extended to the whole algebra. As this algebra is a w*-algebra one can utilize a theo-
rem by Kadison that shows it is sufficient to consider the values of linear functionals on
projectors contained in the subspace in order to determine whether they have positive
extensions. Thus we find the form of projectors belonging to the subspace of one and
two particle operators and subsequently show that the extension conditions needed
in the N -Representability Problem correspond to generalized P, Q and G conditions
plus the additional constraints that the functionals be dispersion free on the number
operator and their values on one particle operators determined by their values on two
particle operators.

Keywords N -Representability · Fock space · Positive extensions

1 Introduction

The N -Representability Problem entails finding the necessary and sufficient condi-
tions that a positive trace class operator, that acts in two electron space, must satisfy
in order to be the contraction of a N -electron state density operator and thus be a
Second Order Reduced Density Operator (SORDO). It was first precisely formulated
in quantum chemistry by Coleman [1] as a result of Coulsons challenge [2], which
was inspired by work initiated by Husimi [3]. The significance of the problem derives
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from the realization that the properties of molecular systems, at a fixed geometry,
are fully described by Hamiltonians that describe the kinetic energy of the individual
electrons, interactions of the electrons with external and internal electric and mag-
netic fields and only the simultaneous pair wise interactions of the electrons with each
other. As simultaneous three, four and higher body interactions are not significant the
N -electron state density operator contains redundant information and the energy of
molecular systems can be fully expressed in terms of the SORDO of the system, which
depends on fewer variables. Hence the determination of the ground state energy can
be formulated as a minimization of a linear functional over operators that act in two
electron space that are constrained to be SORDO’s, instead of a higher dimensional
minimization over N -electron state density operators.

An intrinsic solution (i.e. only in terms of properties of operators acting in two
electron space) has not been found despite a large amount of effort [4] along many
complimentary pathways. This work has, however, resulted in the characterization of
numerous necessary conditions (see for instance [4] and the references therein), the
innovative contracted Schrödinger equation method [5] (and the references therein),
[6] the relation to complexity theory [7] and various variants of the problem i.e. electron
conserving/ electron nonconserving, pure/ensemble and finite/infinite dimensional.

In a paper [8] the N -Representability Problem was shown to be one of finding con-
ditions for the existence of positive extensions of a linear functional from a subspace
of an algebra to the whole algebra. Thus placing it firmly in the area of traditional
mathematical analysis and allows one to utilize theorems proved in this topic over
the last hundred years, where the classical Hahn–Banach theorem [9] on extensions,
f̃ , of unrestricted linear functionals, f , defined on subspaces, W, to the whole vector
space V was specialized to positive linear functionals defined on ordered vector spaces
by Krein [10,11] and to self-adjoint subspaces of c∗-algebras [9] that might or might
not contain the identity by Segal [12] and discussed in detail in [13]. In order for the
extension to be a state [9] i.e. a positive normalized linear functional defined on the
whole algebra its value on the identity must be one i.e.

f̃ (I ) = 1 (1)

so if I ∈ W then

f̃ (I ) = f (I ) = 1. (2)

Segal’s theorem examines the implications of this normalization and shows that a
positive normalized extension f̃ exists if (a)

f (X) ≥ 0 ∀X ∈ W+, (3)

where W+ is the set of positive operators in W i.e.

W+ = {X ∈ W |X ≥ 0 } , (4)
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(b)

sup
X∈W<

f (X) ≤ 1, (5)

where the positive part of the subspace W that contains operators that are less than or
equal to the identity operator is defined as

W< = {X ∈ W |I ≥ X ≥ 0 } (6)

and (c)

inf
X∈W>

f (X) ≥ 1, (7)

where the positive part of the subspace W that contains operators that are greater than
or equal to the identity operator is defined as

W> = {X ∈ W |X ≥ I }. (8)

It can easily be seen that if X ≥ 0 then

‖X‖ ≤ 1 ⇔ I ≥ X ≥ 0 (9)

and thus

W< = {X ∈ W |X ∈ W+; ‖X‖ ≤ 1 } , (10)

and W< is the positive part of the unit ball

B1 = {X |‖X‖ ≤ 1 } (11)

contained in W , while W> can be expressed as

W> = {X ∈ W+ |‖X‖ ≥ 1 } (12)

and is the positive part of the annulus

A1 = {X |‖X‖ ≥ 1 } (13)

contained in W.
The unit ball is a convex set and the Krein–Millmann theorem [9] shows that in

a w∗-algebra [9] it is equal to the closure of its extreme points [14], moreover the
positive part of the unit ball in a w∗-algebra also forms a convex set which is also
the closure of its extreme points. In an important theorem Kadison [15], (also see the
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discussion in [16]), has shown that the extreme points of the positive part of the unit
ball in a w∗-algebra are projectors and in particular belong to the unit sphere

‖X‖ = 1. (14)

In this paper the subspaces we need to consider do not contain any operators that
belong to W> thus we only need to take into account the conditions Eqs. 3 and 5. The
set W+ is also a convex set and is generated by its extreme points, ext{W+}, which is
the set of projectors in W. A functional is positive on W if and only if it is positive on
ext{W+}, while the supremum of the values of linear functionals defined on convex
sets only occur at extreme points of the set, thus one has only to consider the values
of the functionals on the projectors ext {W+} in order to ascertain whether they satisfy
both conditions Eqs. 5 and 3. The necessary and sufficient conditions for the exis-
tence of a state that extends a linear functional defined on a subspace W can thus be
expressed in terms of values of the functional on the set of projectors, ext {W+} , as

1 ≥ f (X) ≥ 0, ∀X ∈ ext {W+}. (15)

In the context of the N -Representability Problem for electrons the relevantw∗-algebra
is the Fermion Fock algebra and the subspace is the one formed by one and two electron
operators. In this paper the form of all the projectors in this subspace are character-
ized and the lower limits in Eq. 15 are shown to correspond to the well known [17]
necessary P, Q and G conditions. The upper limits in Eq. 15 correspond to the Krein,
Segal and Kadison theorems, that in conjunction with the lower limits, make the con-
ditions necessary and sufficient for ensemble representability and we describe them
as generalized P, Q and G conditions. In addition in order for a linear functional to
be N -Representable it must also be dispersion free on the electron number operator
and its values on the space of one particle operators expressed in a specific manner in
terms of its values on the space of two particle operators.

In the following we discuss and examine the preceding ideas first reviewing, in
Sect. 2, some mathematical concepts and notation that are utilized in the subsequent
sections then in Sect. 3 the expansion and contraction maps, which are adjoints of
each other, are considered in the context of Fock space [14,18], which leads to the
definition of Reduced Density Operators (RDO’s). In Sect. 4 we utilize the fact that
the Fock algebra is a concrete realization of a w∗-algebra and show that RDO’s cor-
respond to Reduced States (RS’s) that are positive functionals defined on self adjoint
subspaces of a w∗-algebra that can be extended to states of the algebra. This shows
that the representability problems can be formulated as finding the conditions that
positive linear functionals defined on subspaces must satisfy in order to be extended
to states. Kadisons theorem is then used to show that necessary and sufficient exten-
sion conditions can be expressed in terms of values of the functionals on projectors
contained in the subspace. In Sect. 5 the form of all projectors that can be expressed
as linear combinations of one and two electron operators is found. In Sect. 6 we dis-
play that the conditions found from Kadisons Theorem lead to generalizations of the
known necessary P, Q and G conditions for representability and can be expressed in
terms of matrix elements of first and second order reduced density matrices. In Sect. 7
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we discuss the condition that must be satisfied to make the functionals and reduced
density matrices ensemble N -representable, which leads to the list of necessary and
sufficient ensemble N -representability conditions given in Sect. 8 and we conclude
with a discussion in Sect. 9.

2 Mathematical essentials

In the following the dimension of all spaces are considered to be finite and can be
thought of as approximations to the infinite dimensional case, which must be used to
obtain the exact solutions of quantum mechanical equations. However notation that
is appropriate for the infinite dimensional case will be used even though it becomes
redundant in the finite dimensional case.

2.1 Fermion Fock space

We consider the Fermi Fock space, HF , based on the one electron Hilbert space H1,

defined by the direct sum

HF =
⊕

0≤N≤r

HN (16)

of the N -electron Hilbert spaces

HN =
N∧

H1, (17)

where ∧ denotes antisymmetric tensor product and H0 = {λ |φ〉| λ ∈ C} , and |φ〉 is
the vacuum state. The inner product in the Hilbert space HF is defined as

〈� |� 〉F =
∑

0≤N≤r

〈�N |�N 〉HN =
∑

0≤N≤r

〈
�
∣∣PHN�

〉
HN , (18)

where PHN is the orthogonal projector onto HN and 〈· |· 〉HN is the inner product
in this Hilbert space. (Notational note: If the domain of 〈· |· 〉HN is obvious from the
context the subscript “HN ” will not be explicitly shown).

2.2 Fermion fock algebra

The fermion Fock algebra, F , is the space of bounded operators (“Appendix A”) acting
in HF i.e.

F = B (HF ) . (19)
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This space can be generated by polynomials

X =
∑

0≤P,Q≤r

∑

1≤ j1<···< jP≤r
1≤k1<···<kQ≤r

X j1... jP k1...kP a†
j1
. . . a†

jP
akQ . . . ak1 (20)

of second quantized operators,
{

a†
j

∣∣∣ 1 ≤ j ≤ r
}
, which are defined by their action

on the vacuum vector |φ〉 by

a†
j |φ〉 = ∣∣ϕ j

〉
, 1 ≤ j ≤ r, (21)

where
{∣∣ϕ j

〉∣∣ 1 ≤ j ≤ r
}

is a complete orthonormal basis of the one-electron space
H1 and satisfy the anti-commutation relationships given by

[
a†

j , ak

]

+ = a†
j ak + aka†

j = δ jk; 1 ≤ j, k ≤ r. (22)

The fermion Fock algebra can be decomposed as a vector space direct sum

F = Fe⊕F0 (23)

of a electron conserving subalgebra Fe and a electron non conserving subspace of
operators F0. The subalgebra Fe can be further decomposed as a direct sum of sub-
spaces

Fe =
⊕

0≤N≤r

B (HF )N , (24)

where

B (HF )N =

⎧
⎪⎪⎨

⎪⎪⎩

∑

1≤ j1<···< jN ≤r
1≤k1<···<kN ≤r

X j1... jN k1...kN a†
j1
. . . a†

jN
akN . . . ak1

⎫
⎪⎪⎬

⎪⎪⎭
(25)

or as a direct sum of subalgebras

Fe =
⊕

0≤N≤r

B
(
HN
)
, (26)

where B (HN
)

is the space of bounded operators acting in HN . The subspace F0 can
be decomposed as the vector space direct sum

Fo =
⊕

0≤N =M≤r

B (HF )N ,M , (27)
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where

B (HF )N ,M =

⎧
⎪⎪⎨

⎪⎪⎩

∑

1≤ j1<···< jN ≤r
1≤k1<···<kM ≤r

X j1... jN k1...kM a†
j1
. . . a†

jN
akM . . . ak1

⎫
⎪⎪⎬

⎪⎪⎭
(28)

or as the vector space direct sum

Fo =
⊕

0≤N =M≤r

B
(
HN ,HM

)
, (29)

where B (HN ,HM
)

is the vector space of bounded linear maps from the Hilbert space
HN to the Hilbert space HM . The decompositions Eqs. 24 and 27 express the fermion
Fock algebra in second quantized form as polynomials of second quantized opera-
tors, while the decompositions Eqs. 26 and 29 express it in first quantized form as
expansions of the ket-bras

{ ∣∣ϕ j1 . . . ϕ jN

〉 〈
ϕk1 . . . ϕkM

∣∣∣∣ 1 ≤ j1 < · · · < jN ≤ r, 1 ≤ k1 < · · · < kM ≤ r;
0 ≤ N ,M ≤ r

}
(30)

2.3 Operator inner product

The Fock space trace operation is defined as

Tr {X} =
∑

0≤N≤r

∑

1≤ j1<···< jN ≤r

〈
�N j1... jN

∣∣X�N j1... jN

〉
, (31)

where
{
�N j1... jN

∣∣ 1 ≤ j1 < · · · < jN ≤ r; 0 ≤ N ≤ r
}

are complete orthonormal
bases for HN , 0 ≤ N ≤ r. One can use this trace operation to define the space
of trace class operators B1 (HF ) that have finite trace for all bases and the space of
Hilbert Schmidt operators B2 (HF ) that form a Hilbert space with inner product

(X |Y ) = Tr
{

X†Y
}
. (32)

In finite dimensions, i.e. r < ∞, there is no distinction between these spaces of
operators i.e. B (HF ) = B1 (HF ) = B2 (HF ) .

3 Expansion and contraction maps

The expansion and contraction maps relate the first and second quantization
formulation of quantum mechanics and are defined by the following:
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3.1 Contraction map

Employing the work of [18] one can define a non singular generalized contraction
map

L : B1 (HF ) → B1 (HF ) (33)

by

L (Y ) =
∑

0≤N ,M≤r

∑

1≤ j1<···< jM ≤r
1≤k1<···<kN ≤r

(
a†

k1
. . . a†

kN
a jM . . . a j1

∣∣∣ Y
) ∣∣ϕ j1 . . . ϕ jM

〉 〈
ϕk1 . . . ϕkN

∣∣ . (34)

3.2 Expansion map

The expansion map

� : B (HF ) → B (HF ) (35)

is adjoint to the contraction map, i.e. � = L†, with respect to inner product (· |· ) and
is defined by

(� (X) |Y ) = (X |L (Y ) ) ∀Y ∈ B1 (HF ) . (36)

One can show (“Appendix B.2.1”) that � is actually the second quantization map

a†
j1
. . . a†

jN
akP . . . akM = �

(∣∣ϕ j1 . . . ϕ jM

〉 〈
ϕk1 . . . ϕkN

∣∣) , (37)

which can be expressed in terms of exterior multiplication by the identity operator in
F as

�
(∣∣ϕ j1 . . . ϕ jM

〉 〈
ϕk1 . . . ϕkN

∣∣) = ∣∣ϕ j1 . . . ϕ jM

〉 〈
ϕk1 . . . ϕkN

∣∣ ∧ IHF . (38)

The expansion and contraction maps transform naturally between the first and
second quantization direct sum decompositions of F i.e.

� :
⊕

0≤N ,M≤r

B
(
HN ,HM

)
→

⊕

0≤N ,M≤r

B (HF )N ,M (39)

and

L :
⊕

0≤N ,M≤r

B (HF )N ,M →
⊕

0≤N ,M≤r

B
(
HN ,HM

)
. (40)
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3.3 Reduced density operators

The Pth order reduced density operator associated with a state D ∈ SF can be defined
by using the contraction map L as

DP = PHP L (D) PHP =
∑

1≤ j1<···< jP≤r
1≤k1<···<kP≤r

(
a†

k1
. . . a†

kP
a j1 . . . a jP

∣∣∣ D
) ∣∣ϕ j1 . . . ϕ jP

〉 〈
ϕk1 . . . ϕkP

∣∣ (41)

and in particular the SORDO is given by

D2 = PH2 L (D) PH2 =
∑

1≤ j1< j2≤r
1≤k1<k2≤r

(
a†

k1
a†

k2
a j1a j2

∣∣∣ D
) ∣∣ϕ j1ϕ j2

〉 〈
ϕk1ϕk2

∣∣ . (42)

If D is a state describing a system of N electrons then

D = DN = PHN D PHN

PHM D PHM = 0,M = N (43)

and the above construction corresponds to the normalization

Tr {D2} =
(

N

2

)
. (44)

4 Extensions of positive functionals

The Fermion Fock algebra is a concrete realization of a w∗-algebra [9] (that contains
an identity element), which is a c∗-algebra that also has the property of being a dual
space of another Banach space, in this case B (HF ) is the dual space of B1 (HF ) i.e.
B1 (HF )∗. The important property ofw∗-algebras vis-à-vis c∗-algebras is that they are
the closure of their idempotents, which in the case of F are the orthogonal projectors
onto subspaces of HF .

4.1 States

A state on a w∗-algebra is a bounded positive linear function, f , such that f (I ) = 1,
where I is the identity element of the algebra, it is called a normal state if it can be iden-
tified with an element of the predual of the algebra otherwise it is an abnormal state.
In this paper only normal states belonging to the predual B1 (HF ) of B (HF ) are con-
sidered. In the Fermion Fock algebra normal states are in one to one correspondence
with normalized density operators i.e.

f (X) = Tr
{

X D f
} ; D f ∈ SF . (45)
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The convex set, SF , of density operators in F is given by

SF = {D |D ∈ B1 (HF ) ; D ≥ 0; Tr D = 1 } , (46)

whose elements could describe any type of physical state i.e. electron conserving or
non conserving, ensemble or pure etc.

4.2 Partial states

A partial state is a positive linear functional defined on a self adjoint subspace, W,

of a w∗-algebra that contains the identity I and is a restriction of a state. It can be
shown [19,10] that the necessary and sufficient condition for a positive linear func-
tional defined on such a subspace W to be a partial state and thus extended to a state
is

sup
I≥X≥0
X∈W

f (X) ≤ 1 (47)

and

inf
X≥I

X∈W
f (X) ≥ 1. (48)

The identity element IHF of B (HF ) can be expanded as

IHF =
∑

0≤N≤r

PHN , (49)

where PHN are the orthogonal projectors onto HN , 0 ≤ N ≤ r and in particular
PH0 = |φ〉 〈φ| is the projector onto the vacuum state. Thus the condition Eq. 48 only
effects operators that are non zero on the vacuum state.

4.3 Reduced states

A reduced state is a postive linear functional defined on a self adjoint subspace of a
w∗-algebra that does not contain the identity and is a restriction of a state. The nec-
essary and sufficient condition [12] for a linear functional defined on such a subspace
W to be a reduced state and thus be extended to a state is

1 ≥ f (X) ≥ 0, ∀X ∈ B1+ (W) , (50)

where B1+ (W) is the positive part of the unit ball of B (HF ) contained in W given
by

B1+ (W) = { X | X ∈ W, I ≥ X ≥ 0} ≡ { X | X ∈ W+, ‖X‖B(HF ) ≥ 1
}

(51)
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and

inf
X∈A1+(W)

f (X) ≥ 1, (52)

where A1+ (W) is the positive part of the unit annulus of B (HF ) contained in W
given by

A1+ (W) = { X | X ∈ W, X ≥ I } ≡ { X | X ∈ W+, ‖X‖B(HF ) ≤ 1
}
. (53)

An extension of an important theorem of Kadison [15] applied to self adjoint
subspaces of w∗-algebra shows that the positive extension condition Eq. 51 can be
expressed in terms of projectors belonging W, an observation that is crucial in deriving
necessary and sufficient conditions for representability (Sect. 5).

In order to obtain representability conditions for SORDO’s the appropriate subspace
to consider in B (HF ) is the subspace formed by one and two electron conserving
operators

	2 =
⊕

1≤P≤2

B (HF )P , (54)

as reduced states defined on 	2 correspond to SORDO’s through

D2 =
∑

1≤ j1< j2≤r
1≤k1<k2≤r

f
(

a†
j1

a†
j2

ak2 ak1

) ∣∣ϕ j1ϕ j2

〉 〈
ϕk1ϕk2

∣∣ , (55)

where

f
(

a†
j1

a†
j2

ak2 ak1

)
=
(

a†
k1

a†
k2

a j2 a j1

∣∣∣ D
)

(56)

and FORDO’s through

D1 =
∑

1≤ j1≤r
1≤k1≤r

f
(

a†
j1

ak1

) ∣∣ϕ j1

〉 〈
ϕk1

∣∣ , (57)

where

f
(

a†
j1

ak1

)
=
(

a†
k1

a j1

∣∣∣ D
)
. (58)

In B (HF ) the condition Eq. 53 only effects operators that are non zero on the
vacuum state thus does not constrain any operators belonging to 	2 and one can just
concentrate on the conditions given by Eq. 51.
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5 Projectors

As we are searching for necessary and sufficient conditions for extending positive
linear functionals the condition Eq. 5 needs only to be checked on extreme points
of the positive portion of the unit ball B1 (	2) , which are projection operators [15].
One should note that these conditions will be representability conditions and that fur-
ther constraints need to considered (Sect. 8) to obtain N -representability conditions.
Projectors in B (HF ) are postive idempotent operators, P,with norm equal to one i.e.

P ≥ 0

P2 = P

‖P‖B(HF ) = sup
|�〉∈HF

{ 〈� |P� 〉
〈� |� 〉

}
= 1. (59)

We first characterize the projectors in B (HF )1 , then B (HF )2 and finally 	2.

Projectors in B(HF )1

Every positive operator in B (HF )1 can be expressed as (“Appendix B”)

λ1 =
∑

1≤ j,k≤r

λ1 jka†
j ak =

∑

1≤l≤r

βlb
†
l bl , βl ≥ 0, 1 ≤ l ≤ r, (60)

where

b†
l =

∑

1≤ j≤r

ul j a
†
j , 1 ≤ l ≤ r (61)

and the coefficients
{
ul j
}

form a r × r unitary matrix i.e.

U
†
U = UU

† = Ir . (62)

In “Appendix A” we show that the idempotency condition

⎛

⎝
∑

1≤l≤r

βlb
†
l bl

⎞

⎠
2

=
∑

1≤l≤r

βlb
†
l bl (63)

together with the norm condition

∥∥∥∥∥∥

∑

1≤l≤r

βlb
†
l bl

∥∥∥∥∥∥B(HF )

= 1 (64)
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can only be satisfied by positive operators where

βl = 0, 1 ≤ l = k ≤ r (65)

for some fixed k. Thus all projectors belonging to B (HF )1 are of the form

λ1 = b†b, (66)

where b† creates a normalized General Spin Orbital (GSO)

Projectors in B(HF )2

Every positive operator in B (HF )2 can be expressed as (“Appendix B”)

λ2 =
∑

1≤ j<k≤r
1≤l<m≤r

λ2 jklma†
j a

†
k amal =

∑

1≤l≤(r
2)

βl g
†
l gl , βl ≥ 0, 1 ≤ l ≤

(
r

2

)
, (67)

where the geminal creator is

g†
l =

∑

1≤ j<k≤r

ul jka†
j a

†
k , 1 ≤ l ≤

(
r

2

)
(68)

and the coefficients
{

ul jk
∣∣ 1 ≤ l ≤ (r2

)
, 1 ≤ j < k ≤ r

}
form a

(r
2

) × (r
2

)
unitary

matrix i.e.

U
†
U = UU

† = I(r
2)
. (69)

In “Appendix B” we show that the idempotency condition

⎛

⎝
∑

1≤l≤(r
2)

βl g
†
l gl

⎞

⎠
2

=
∑

1≤l≤(r
2)

βl g
†
l gl (70)

together with the norm condition

∥∥∥∥∥∥

∑

1≤l≤(r
2)

βl g
†
l gl

∥∥∥∥∥∥
B(HF )

= 1 (71)

can only be satisfied by positive operators where

βl = 0, 1 ≤ l = k ≤
(

r

2

)
(72)
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for some fixed k and the rank of the kth geminal must be one. Thus in order that a two
electron operator λ2 be a projection operator it must be of the form

λ2 = a†b†ba, (73)

where a† and b† create normalized orthogonal GSO’s.

Projectors in 	2

5.1 Projections from two hole operators

By considering the positivity, idempotency and normalization relationship for two
hole operators

η2 =
∑

1≤ j<k≤r
1≤l<m≤r

η2 jklma j aka†
ma†

l =
∑

1≤l≤(r
2)

γl hlh
†
l , γl ≥ 0, 1 ≤ l ≤

(
r

2

)
, (74)

where the geminal annihilator is

gl =
∑

1≤ j<k≤r

u2l jka j ak, 1 ≤ l ≤
(

r

2

)
(75)

and the coefficients
{

u2l jk
∣∣ 1 ≤ l ≤ (r2

)
, 1 ≤ j < k ≤ r

}
form a

(r
2

) × (r
2

)
unitary

matrix i.e.

U
†
2U2 = U2U

†
2 = I(r

2)
, (76)

one can carry out the same analysis as in Sect. 5 and obtain (“Appendix B”) that in
order that the two hole operator η2 be a projection operator it must be of the form

η2 = baa†b†, (77)

where a and b annihilate normalized orthogonal GSO’s. The projection operator η2
does not belong to B (HF )2 but by using the canonical anticommutation relationships
Eq. 22 one can observe that

η2 = baa†b† = IHF − a†a − b†b + a†b†ba (78)

and thus

a†a + b†b − a†b†ba = IHF − η2, (79)
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which shows that

λ̃2 = a†a + b†b − a†b†ba (80)

is a projection operator that belongs to 	2.

5.2 Projections from products of one electron operators

By considering the positivity, idempotency and normalization relationships for
products λ1λ

′
1 of one electron operators of the form Eq. 60 one can determine

(“Appendix B”) that these products are projection operators when

λ1λ
′
1 = a†bb†a = a†a − a†b†ba. (81)

One can prove (“Appendix B”) that there are no other projection operators of the
form

λ =
∑

1≤ j,k≤r

λ1 jka†
j ak +

∑

1≤ j<k≤r
1≤l<m≤r

λ2 jklma†
j a

†
k amal (82)

other than

a†a, a†b†ba, a†a − a†b†ba, a†a + b†b − a†b†ba. (83)

6 Generalized P, Q and G conditions

The necessary P, Q and G conditions for representability of a
(r

2

) × (r
2

)
hermitian

matrices were quickly discovered [17]. These conditions can be expressed in terms
of the basic variables of the ground state energy optimization problem formed by
the complex matrix elements

{
D2 j1 j2k1k2

∣∣ 1 ≤ j1 < j2 ≤ r, 1 ≤ k1 < k2 ≤ r
}

of the
matrix D2. In the notation of this paper they are:

6.1 P-Condition

A potential Second Order Reduced Density Matrix (SORDM) matrix D2 given by

D2 j1 j2k1k2 =
(

a†
k1

a†
k2

a j1a j2

∣∣∣ D
)

= D2k1k2 j1 j2 (84)

is semi definite i.e.

D2 ≥ 0. (85)
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6.2 Q-Condition

The matrix Q given by

Q j1 j2k1k2 =
(

a†
k1

a j1a†
k2

a j2

∣∣∣ D
)

= Qk1k2 j1 j2 (86)

is semi definite i.e.

Q ≥ 0. (87)

If one invokes the pure N condition (Sect. 8) this condition becomes a necessary
N -representability condition and the Q matrix can be expressed in terms of the matrix
D2 as

Q j1 j2k1k2 = 1

(N − 1)

∑

1≤l≤r

D2 j2lk1lδ j1k2 − D2 j1 j2k1k2 . (88)

6.3 G-Condition

The matrix G2 given by

G j1 j2k1k2 =
(

a j1a j2 a†
k1

a†
k2

∣∣∣ D
)

= G2k1k2 j1 j2 (89)

is semi definite i.e.

G ≥ 0. (90)

Again if one invokes the pure N condition (Sect. 8) this condition becomes a necessary
N -representability condition and the G matrix can be expressed in terms of the matrix
D2 as

G j1 j2k1k2 = 1

(N − 1)

∑

1≤l≤r

{
D2 j2lk1lδ j1k2 + D2 j1lk2lδ j2k1

}− D2 j1 j2k1k2 . (91)

The following generalized P, Q and G conditions, produced by examining the values
of the functional f on projectors belonging to	2, in combination with the one electron
conditions

1 ≥ f
(

b†b
)

≥ 0 ∀b, (92)

are Necessary and Sufficient for the existence of positive extensions of bounded linear
functionals

f : 	2 → C (93)
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to a state of B (HF ) and are based on the theorems of Krien [10], Segal [12] and
Kadison [15].

6.4 Generalized P-Condition

A linear functional f can be extended to a state if

1 ≥ f
(

a†b†ba
)

≥ 0 ∀a, b, (94)

where |a〉 and |b〉 are normalized orthogonal GSO’s belonging to H1 and a† and b†

are the creators of those GSO’s. As

D2abab = f
(

a†b†ba
)

(95)

this is a necessary condition for ensemble representability.

6.5 Generalized Q-Condition

A linear functional f can be extended to a state if

1 ≥ f
(

a†a − a†b†ba
)

≥ 0 ∀a, b, (96)

which gives

1 ≥ D1aa − D2abab ≥ 0 ∀a, b, (97)

where the diagonal elements of a possible First Order Reduced Density Matrix
(FORDM) are defined as

D1aa = f
(

a†a
)
. (98)

Again this is a necessary condition for ensemble representability.

6.6 Generalized G-Condition

A linear functional f can be extended to a state if

1 ≥ f
(

a†a + b†b − a†b†ba
)

≥ 0 ∀a, b, (99)

which gives
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1 ≥ D1aa − D1bb − D2abab ≥ 0 ∀a, b (100)

and also a necessary condition for ensemble representability.

7 Electron and pair number conditions

In order to obtain N -representable extensions one must constrain the functional f to
be dispersion free on the number operator i.e.

f
(
N 2

1

)
= f (N1)

2 , (101)

where

N1 =
∑

1≤ j≤r

a†
j a j . (102)

One can show (“Appendix B.2.1”) that Eq. 101 is equivalent to

f (N1) = N (103)

and

f (N2) =
(

N

2

)
(104)

for some fixed N , where the pair operator N2 is defined as

N2 =
∑

1≤ j<k≤r

a†
j a

†
k aka j . (105)

If f is dispersion free on the number operator the values of f on B (HF )1 must be
related to its values on B (HF )2 by

f
(

a†
j ak

)
= (N − 1)−1 f

(
a†

j N1ak

)
= (N − 1)−1

∑

1≤l≤r

f
(

a†
j a

†
l alak

)
, (106)

thus if the functional is only defined on B (HF )2 one can define allowable extensions
to B (HF )1 by Eq. 106.

In terms of matrix elements the definition Eq. 106 becomes

D1 jk = (N − 1)−1
∑

1≤l≤r

D2 jlkl (107)

and one can see that if the value of the functional on the pair operator is set by Eq. 104
then the electron number condition Eq. 103 is automatically ensured.
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8 N-Representability conditions

The representability conditions in Sect. 6 can be complimented and modified by the
conditions in Sect. 7 to form ensemble Necessary and Sufficient N -representability
conditions which are:

1. Normalization

∑

1≤ j<k≤r

D2 jk jk =
(

N

2

)
(108)

2. Generalized P-Condition

1 ≥ D2abab ≥ 0 ∀a, b (109)

3. Generalized Q-Condition

1 ≥ (N − 1)−1
∑

1≤l≤r

D2alal − D2abab ≥ 0 ∀a, b (110)

4. Generalized G-Condition

1 ≥ (N − 1)−1
∑

1≤l≤r

{D2alal + D2blbl} − D2abab ≥ 0 ∀a, b. (111)

The conditions Eqs. 108,109,111 and the lower bound in Eq. 110 have been discovered
in the study of the Diagonal Representability Problem [20–24]. However, these con-
ditions were not caste in terms of bounds on the extremal values of a linear functional
on the intersection of the unit ball of the Fermion Fock algebra with the subspace
	2. Expressing the bounds in this context allows one to utilize general extension
theorems from functional analysis to determine necessary and sufficient conditions
for a linear functional to be a reduced state if all the projectors in this intersection are
characterized. The theorems in “Appendix B” characterize all these projections.

9 Discussion

In this paper we have described how the N -Representability problem entails find-
ing the conditions that linear functionals belonging to the dual space, B (HF )∗2 , of
bounded linear functionals defined on the subspace of second quantized two electron
operators, B (HF )2 , contained in the Fock algebra, F , need to satisfy in order to be
extended to N -electron states and thus be reduced N -electron states i.e. restrictions
of N -electron states.

As this algebra is a w∗-algebra the theorems of Krein, Segal and Kadison were
utilized to show that the positive extension conditions could be expressed in terms
of the values of the restricted linear functionals on projectors contained in the sub-
space 	2 generated by the one and two electron operators, i.e. on the extreme points,
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ext {	2+} , of the cone of positive operators belonging to this space, which have to
belong to the interval [0, 1] . These conditions are generalizations of the known P, Q
and G conditions, which are given by the lower bound of this interval. In addition the
condition that these functionals be restrictions of N -electron states entails that they
must be dispersion free on the number operator, N1, and that their values on the one
electron subspace B (HF )1 be determined by their values on the two electron subspace
B (HF )2.

We also described how the functionals belonging to B (HF )∗2 correspond to oper-
ators belonging B (H2

)
that act in H2 and obtained their matrix representations in

a natural way using the generalized contraction map. This map is the adjoint of the
generalized expansion map which we display is the second quantization map. This cor-
respondence shows that the N -electron ground state of the system can be determined
by a constrained variation of the linear functional that corresponds to the reduced
Hamiltonian, over operators belonging to B (H2

)
subject to the normalization and

generalized P, Q and G constraints, which are all linear. This problem can be expressed
in terms of matrix elements of operators belonging B (H2

)
produced by decomposable

bases of H2, however in order to be sufficient conditions the matrix elements must
satisfy them in all decomposable bases, i.e. the conditions on the matrices produced
by these elements must be conserved under the under the action of the representations,
RH2

(
U
(H1

))
, of the one electron unitary group U

(H1
)

on H2. These observations
can also be used to obtain to a more constrained form of the Semi Definite Program-
ming (SDP) method successfully used by Mazziotti [25].

In a future work this variational problem will be expressed in terms of functions
defined on the group manifold of U

(H1
)

and shown to lead to a classical Linear
Programming problem that is amenable to sequential approximations, that are all
N -Representable.

Appendix

A Operator Spaces

In the following the Fock space HF will be considered as the underlying Hilbert space
on which the operators are defined and a few basic properties will be listed.

A.1 Finite rank operators

An operator X is a finite rank operator acting HF if

X =
∑

1≤ j≤m<∞
α j
∣∣� j
〉 〈
� j
∣∣ , (A1)

where
{
� j
∣∣ 1 ≤ j ≤ m

}
and

{
� j
∣∣ 1 ≤ j ≤ m

}
are orthonormal sets in HF . The set

of finite rank operators is denoted B0 (HF ) and is not closed if HF is infinite dimen-
sional.
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A.2 Bounded operators

The operator norm (also called the uniform norm) is defined as

‖X‖B(HF ) = sup
|�〉∈HF

⎧
⎨

⎩

(〈
�| X† X�

〉

〈�|�〉

) 1
2

⎫
⎬

⎭ = sup
|�〉∈HF

{‖X�‖HF

‖�‖HF

}
, (A2)

(where ‖‖HF
is the norm in HF ), and the space of bounded operators acting on the

Hilbert space HF as

B (HF ) = {X
∣∣‖X‖B(HF ) < ∞}

. (A3)

If one restricts attention to self adjoint operators X = X† then it can be shown that

‖X‖B(HF ) = sup
|�〉∈HF

{∣∣∣∣
〈�| X�〉
〈�|�〉

∣∣∣∣

}
(A4)

and thus for positive operators, X ≥ 0

‖X‖B(HF ) = sup
|�〉∈HF

{ 〈�| X�〉
〈�|�〉

}
. (A5)

The space B (HF ) is closed in the operator norm topology.

A.3 Compact operators

The space of compact operators, C (HF ) , is the closed space produced by taking the
closure of the set of finite rank operators with respect to the operator norm topology
i.e. any compact operator can be expressed as

X = lim
m→∞

∑

1≤ j≤m

α j
∣∣� j
〉 〈
� j
∣∣ , (A6)

in the sense that

lim
m→∞

∥∥∥∥∥∥
X −

∑

1≤ j≤m

α j
∣∣� j
〉 〈
� j
∣∣

∥∥∥∥∥∥B(HF )

= 0. (A7)

A.4 Trace class operators

The trace class norm is defined as

‖X‖1 = Tr

{(
X† X

) 1
2
}

(A8)
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and the space of trace class operators acting on the Hilbert space HF as

B1 (HF ) = {X |‖X‖1 < ∞}. (A9)

The space B1 (HF ) is closed with respect to the ‖‖1 norm, while the closure with
respect to the ‖‖B(HF ) norm produces C (HF ) .

A.5 Hilbert–Schmidt operators

The Hilbert–Schmidt norm is defined as

‖X‖2 = (Tr{X† X}) 1
2 (A10)

and the space of Hilbert–Schmidt operators acting on the Hilbert space HF as

B2 (HF ) = {X |‖X‖2 < ∞}. (A11)

The space B2 (HF ) is closed with respect to the ‖‖2 norm, while the closure with
respect to ‖‖B(HF ) norm produces C (HF ) .

A.6 Relationship between the spaces

The relationship between the spaces is

B (HF ) ⊇ C (HF ) ⊇ B2 (HF ) ⊇ B1 (HF ) ⊇ B0 (HF ) . (A12)

The closure of B0 (HF ) (and thus of C (HF ) , B2 (HF ) and B1 (HF )) with respect
to the strong operator topology is B (HF ) , where these limits can be defined as

X = s- lim
m→∞ Xm ⇔ lim

m→∞ ‖(X − Xm)�‖HF = 0 ∀ |�〉 ∈ HF , (A13)

in contrast to the uniform operator topology limits that are given by

X = lim
m→∞ Xm ⇔ lim

m→∞ ‖(X − Xm)‖HF = 0

= lim
m→∞ sup

|�〉∈HF

⎧
⎨

⎩

(〈
�| (X − Xm)

† (X − Xm)�
〉

〈�|�〉

) 1
2

⎫
⎬

⎭. (A14)

If the dimension of HF is finite all of these spaces are identical and closed in all of
the preceding norms and topologies.
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B Projectors

A general element of 	2 can be expanded as

λ =
∑

1≤ j,k≤r

λ1 jka†
j ak +

∑

1≤ j<k≤r
1≤l<m≤r

λ2 jklma†
j a

†
k amal (B1)

and the condition that it is a projector i.e. idempotent is that

λ = λ2, (B2)

which implies

λ = λ† and λ ≥ 0. (B3)

In a c∗-algebra

∥∥∥X† X
∥∥∥ = ‖X‖2 (B4)

The idempotency condition Eq. B2 implies that

∥∥∥λ2
∥∥∥ = ‖λ‖ (B5)

and the c∗-norm property Eq. B4

∥∥∥λ2
∥∥∥ = ‖λ‖2 (B6)

gives

‖λ‖2 = ‖λ‖ (B7)

and thus

‖λ‖ = 1. (B8)

B.1 One electron case

We first consider the case λ2 = 0 then

λ1 = λ2
1 (B9)
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and noting that λ1 must be self adjoint and positive one has

λ = λ1 =
∑

1≤ j,k≤∞
λ1 jka†

j ak =
∑

1≤ j,k≤r
1≤l≤r

u jlβl ūkla
†
j ak =

∑

1≤l≤r

βlb
†
l bl , (B10)

where

1 ≥ βl ≥ 0; 1 ≤ j ≤ r (B11a)

b†
l =

∑

1≤ j≤r

a†
j u jl (B11b)

b†
l |φ〉 = |ψl〉 (B11c)

U
†
1U1 = U1U

†
1 = Ir , (B11d)

where U1 is the matrix composed of the matrix elements
{

u jk
∣∣ 1 ≤ j, k ≤ r

}
.

The condition Eq. B9 becomes

∑

1≤l≤r

βlb
†
l bl =

∑

1≤l≤r

β2
l b†

l bl + 2
∑

1≤l1<l2≤r

βl1βl2 b†
l1

bl1 b†
l2

bl2 , (B12)

which can be rewritten as

∑

1≤l≤r

{βl (1 − βl)} b†
l bl = 2

∑

1≤l1<l2≤r

βl1βl2 b†
l1

b†
l2

bl2 bl1 . (B13)

This equality must be true on all vectors in HF in particular on |ψκ 〉 ∈ H1, 1 ≤ κ ≤ r,
i.e.

∑

1≤l≤r

{βl (1 − βl)} b†
l bl |ψκ 〉 = 2

∑

1≤l1<l2≤r

βl1βl2 b†
l1

b†
l2

bl2 bl1 |ψκ 〉 , (B14)

which gives

βκ (1 − βκ) |ψκ 〉 = 0, 1 ≤ κ ≤ r (B15)

i.e.

βκ = 0 or βκ = 1, 1 ≤ κ ≤ r. (B16)

One can see that βκ = 1 for only one value of κ ∈ {1, . . . , r} , for let {n1, . . . , nr ′ } be
a subset of {1, . . . , r} and

λ1 =
∑

1≤ν≤κ≤r
σν∈{1,...,r}

b†
σν

bσν (B17)
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then

λ2
1 =

∑

σ∈{1,...,r}
b†
σbσ +

∑

σ,σ ′∈{1,...,r}
b†
σb†
σ ′bσ ′bσ = λ1 =

∑

σ∈{1,...,r}
b†
σbσ (B18)

thus

∑

σ,σ ′∈{1,...,r}
b†
σb†
σ ′bσ ′bσ = 0, (B19)

which is only possible if r ′ = 1. Thus if λ1 is a projector it must be of the form

λ1 = b†b. (B20)

B.2 Two electron case

We consider the case λ1 = 0 then

λ2 = λ2
2 (B21)

and

λ = λ2 =
∑

1≤ j1< j2≤r
1≤k1<k2≤r

λ2 j1 j2k1k2 a†
j1

a†
j2

ak2 ak1 =
∑

1≤ j1< j2≤r
1≤k1<k2≤r

1≤l≤(r
2)

u j1 j2lβl ūlk1k2 a†
j1

a†
j2

ak2 ak1

=
∑

1≤l≤(r
2)

βl g
†
l gl , (B22)

where the matrix that diagonalizes the matrix

λ2 ≡ {λ2 j1 j2k1k2

∣∣ 1 ≤ j1 < j2 ≤ r; 1 ≤ k1 < k2 ≤ r
}

(B23)

is unitary i.e.

U
†
2U2 = U2U

†
2 = I(r

2)
, (B24)

so that

λ2 = U2

⎛

⎜⎝
β1 · · · 0
...
. . .

...

0 · · · β(r
2)

⎞

⎟⎠U
†
2. (B25)
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The geminal creators
{

g†
l

∣∣∣ 1 ≤ l ≤ (r2
)}

, geminal coefficients
{

gl j1 j2

∣∣ 1≤ j1 < j2≤r
}

and the geminal coefficient matrices Gl have the properties

g†
l =

∑

1≤ j1< j2≤r

gl j1 j2 a†
j1

a†
j2

= 1

2

∑

1≤ j1, j2≤r

gl j1 j2 a†
j1

a†
j2
; (B26a)

Gl j1 j2 = gl j1 j2 = −gl j2 j1 = u j1 j2l (B26b)

g†
l |φ〉 = |gl〉 ; 1 ≤ l ≤

(
r

2

)
(B26c)

〈
gl1

∣∣gl2

〉 = δl1l2; 1 ≤ l1, l2 ≤
(

r

2

)
(B26d)

Tr
{
G

†
l1

Gl2

}
= 2δl1l2; 1 ≤ l1, l2 ≤

(
r

2

)
(B26e)

Gl = −G
t
l ; 1 ≤ l ≤

(
r

2

)
. (B26f)

The values of the βl ’s in Eq. B22 are restricted by

1 ≥ βl ≥ 0; 1 ≤ l ≤
(

r

2

)
(B27)

as the projection of λ2 on H2 is given by

PH2λ2 PH2 =
∑

1≤l≤(r
2)

βl |gl〉 〈gl | , (B28)

where λ2 is the second quantization of PH2λ2 PH2 i.e.

λ2 = �
(
PH2λ2 PH2

)
, (B29)

thus

λ2 ≥ 0 ⇒ PH2λ2 PH2 ≥ 0 (B30)

and

λ2 − PH2λ2 PH2 ≥ 0, (B31)

as ‖λ2‖ = 1 (λ2 is a projector) the eigenvalues of PH2λ2 PH2 ∈ [0, 1] .

B.2.1 Two electron operator idempotency condition

Lemma 1 If λ2 is a projector then λ2 = ∑

1≤l≤(r
2)
βl g

†
l gl , where βl = 1 or 0.
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Proof Using the expansion Eq. B22 of the operator λ2 the idempotency condition
Eq. B21 becomes

∑

1≤l≤(r
2)

βl g
†
l gl =

∑

1≤l1,l2≤(r
2)

βl1βl2 g†
l1

gl1 g†
l2

gl2 (B32)

and one must compare the left hand side of Eq. B32 to the right hand side. In order to
do this one needs to bring the RHS of Eq. B32 to normal form by sequentially using
the canonical anti commutation relationships. The first step produces

∑

1≤l1,l2≤(r
2)

βl1βl2 g†
l1

gl1 g†
l2

gl2

=
∑

1≤l1,l2≤(r
2)

βl1βl2

{
g†

l1

[
gl1, g†

l2

]
gl2 + g†

l1
g†

l2
gl1 gl2

}
. (B33)

which can be developed by noting that

[
gl1, g†

l2

]
= 1

4

∑

1≤ j1, j2≤r
1≤k1,k2≤r

ḡl1 j1 j2 gl2k1k2

[
a j2 a j1 , a†

k1
a†

k2

]

= −1

4

∑

1≤ j1, j2≤r
1≤k1,k2≤r

ḡl1 j1 j2 gl2k1k2

[
a†

k1
a†

k2
, a j2 a j1

]
, (B34)

and (“Appendix B.2.1”)

[
a†

k1
a†

k2
, a j2 a j1

]
= IHF δ j2k1δ j1k2 − IHF δ j2k2δ j1k1 + a†

k2
a j2δ j1k1

−a†
k1

a j2δ j1k2 − a†
k2

a j1δ j2k1 + a†
k1

a j1δ j2k2 (B35)

to give

[
gl1, g†

l2

]
= −1

4

∑

1≤ j1, j2≤r
1≤k1,k2≤r

ḡl1 j1 j2 gl2k1k2

{
IHF δ j2k1δ j1k2 − IHF δ j2k2δ j1k1

a†
k2

a j2δ j1k1 − a†
k1

a j2δ j1k2 − a†
k2

a j1δ j2k1 + a†
k1

a j1δ j2k2

}
,

= 1

2

∑

1≤ j1, j2≤r

ḡl1 j1 j2 gl2 j1 j2

−1

4

∑

1≤ j, j2≤r
1≤k2≤r

{
ḡl1 j j2 gl2 jk2−ḡl1 j j2 gl2k2 j−ḡl1 j2 j gl2 jk2 + ḡl1 j2 j gl2k2 j

}
a†

k2
a j2 ,

(B36)

123



482 J Math Chem (2012) 50:455–491

and after using gl jk = −glk j

[
gl1, g†

l2

]
= δl1l2 +

∑

1≤ j,k≤r

ḡl1 j j gl2 jka†
k a j = δl1l2 −

∑

1≤ j2,k2≤r

(
G

†
l1

Gl2

)

jk
a†

k a j .

(B37)

The idempotency condition then becomes

∑

1≤l≤(r
2)

βl g
†
l gl =

∑

1≤l1,l2≤(r
2)

βl1βl2 g†
l1

gl1 g†
l2

gl2

=
∑

1≤l1,l2≤(r
2)

βl1βl2

⎧
⎨

⎩g†
l1

⎧
⎨

⎩δl1l2 −
∑

1≤ j2,k2≤r

(
G

†
l1

Gl2

)

j2k2
a†

k2
a j2

⎫
⎬

⎭

× gl2 + g†
l1

g†
l2

gl1 gl2

⎫
⎬

⎭ , (B38)

which simplifies to

∑

1≤l≤(r
2)

βl g
†
l gl =

∑

1≤l≤(r
2)

β2
l g†

l gl

−
∑

1≤l1,l2≤(r
2)

βl1βl2

⎧
⎨

⎩
∑

1≤ j2,k2≤r

(
G

†
l1

Gl2

)

j2k2
g†

l1
a†

k2
a j2 gl2 + g†

l1
g†

l2
gl1 gl2

⎫
⎬

⎭

=
∑

1≤l≤(r
2)

β2
l g†

l gl −
∑

1≤l1,l2≤(r
2)

βl1βl2

∑

1≤ j2,k2≤r

(
G

†
l1

Gl2

)

j2k2
g†

l1
a†

k2
a j2 gl2

−
∑

1≤l1,l2≤(r
2)

βl1βl2 g†
l1

g†
l2

gl1 gl2 . (B39)

The operator equality in Eq. B39 must be true on all vectors thus in particular

∑

1≤l≤(r
2)

βl g
†
l gl
∣∣gp
〉 =

∑

1≤l≤(r
2)

β2
l g†

l gl
∣∣gp
〉⇐⇒ βp

(
βp − 1

) = 0;

1 ≤ p ≤
(

r

2

)
(B40)

leading to

λ2 =
∑

1≤ν≤κ≤(r
2)

σν∈{1,...,(r
2)}

g†
σν

gσν ; σν = σν′ unless ν = ν′, (B41)

where κ is the number of non zero β ′s. ��
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Lemma 2 If λ2 is a projector then λ2 = g†g,where g† creates a normalized geminal.

Proof As λ2 is a projection operator its eigenvalues are 1 or 0 and as [λ2,N1] = 0 its
eigenvectors can be chosen to simultaneously diagonalize the number operator N1.

In the finite dimensional case, i.e. r < ∞, the subspace Hr is one dimensional and
is spanned by a single normalized r-fold antisymmetrized product, |ϕ1 . . . ϕr 〉 , formed
from any orthonormal basis,

{
ϕ j
∣∣ 1 ≤ j ≤ r

}
of H1, i.e.

|ϕ1 . . . ϕr 〉 up to a phase factor= ∣∣ϕ′
1 . . . ϕ

′
r

〉
, (B42)

where
{
ϕ j
∣∣ 1 ≤ j ≤ r

}
and

{
ϕ′

j

∣∣∣ 1 ≤ j ≤ r
}

are arbitrary orthonormal bases of H1.

Thus any vector in Hr is an eigenvector of λ2, as λ2 : Hr → Hr .
Any geminal creator g†

l can be expressed in canonical form as [26,27]

g†
l =

∑

1≤ j≤s

cl j a
†
l j a

†
l j+s; cl j ≥ 0, 1 ≤ j ≤ s, (B43)

where

∑

1≤ j≤s

c2
l j = 1 (B44)

and the canonical general spin orbitals of |gl〉 = g†
l |φ〉 are produced by

a†
l j |φ〉 = ∣∣ϕl j

〉
. (B45)

Hence

g†
l gl =

∑

1≤ j,k≤s

cl j clka†
l j a

†
l j+salk+salk (B46)

and λ2 can be expanded (noting that βl = 1 or 0, 1 ≤ l ≤ (r2
)
) as

〈ϕ1 . . . ϕr |λ2ϕ1 . . . ϕr 〉 =
∑

1≤l≤(r
2)

βl

〈
ϕl1 . . . ϕlr

∣∣∣g†
l glϕl1 . . . ϕlr

〉
(B47)

=
∑

1≤ j,k≤s
1≤l≤(r

2)

βl cl j clk

〈
ϕl1 . . . ϕlr

∣∣∣a†
l j a

†
l j+salk+salkϕl1 . . . ϕlr

〉
(B48)

=
∑

1≤ j≤s
1≤l≤(r

2)

βl c
2
l j =

∑

1≤l≤(r
2)

βl . (B49)
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The vector |ϕ1 . . . ϕr 〉 is an eigenvector of λ2 with eigenvalue 1 (as λ2 is a projector)
thus

∑

1≤l≤(r
2)

βl = 1, (B50)

as βl = 1 or 0, 1 ≤ l ≤ (r2
)

only one βl can be non zero and λ = g†g. ��
Thus one can prove the following theorem:

Theorem 3 λ2 ∈ B (HF )2 is a projector if only if it can be expressed in the form
λ2 = a†b†ba, where a† and b† create normalized orthogonal vectors in H1.

Proof Using the two preceding lemmas one has that if λ2 is a two electron projector

λ2 = g†g

and thus

λ2
2 = g†gg†g. (B51)

Using the canonical expansion of the geminal one can expand Eq. B51 as

g†gg†g =
∑

1≤ j1, j2, j3, j4≤s

a†
j1

a†
j1+s

a j2 a j2+s a†
j3

a†
j3+s

a j4a j4+s c j1 c j2 c j3 c j4 . (B52)

and bring Eq. B52 to normal form by observing that

a j2 a j2+s a†
j3

a†
j3+s

= δ j2 j3+s δ j2+s j3 − δ j2 j3δ j2+s j3+s − a†
j3+s

a j2δ j2+s j3

+a†
j3

a j2δ j2+s j3+s + a†
j3+s

a j2+s δ j2 j3 − a†
j3

a j2+s δ j2 j3+s + a†
j3

a†
j3+s

a j2+s a j2

= −I δ j2 j3 + a†
j3

a j2δ j2 j3 + a†
j3

a j2δ j2 j3 + a†
j3

a†
j3+s

a j2+s a j2 (B53)

and obtaining

g†gg†g =
∑

1≤ j1, j2, j3, j4≤s

a†
j1

a†
j1+s

(
−δ j2 j3 + a†

j3
a j2δ j2 j3 + a†

j3+sa j2+sδ j2 j3

+ a†
j3

a†
j3+s

a j2+s a j2

)
× a j4a j4+s c j1 c j2 c j3 c j4

=
∑

1≤ j1, j4≤s

a†
j1

a†
j1+s

a j4+s a j4 c j1 c j4 ‖g‖2
H2

+
∑

1≤ j1, j2, j4≤s

c j1a†
j1

a†
j1+s

n j2

(
a†

j2
a j2 + a†

j2+sa j2+s

)
a j4a j4+s c j4

+
∑

1≤ j1, j2, j3, j4≤s

a†
j1

a†
j1+s

a†
j3

a†
j3+s

a j2+s a j2 a j4a j4+s c j1 c j2 c j3 c j4 , (B54)
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where n j = a†
j a j . The difference between λ2

2 and λ2 can then be expressed as

� = g†gg†g − g†g =
∑

1≤ j1, j2, j4≤s

c j1a†
j1

a†
j1+s

n j2

(
a†

j2
a j2 + a†

j2+sa j2+s

)
a j4a j4+s c j4

+
∑

1≤ j1, j2, j3, j4≤s

a†
j1

a†
j1+s

a†
j3

a†
j3+s

a j2+s a j2 a j4a j4+s c j1 c j2 c j3 c j4 (B55)

and one can note that

� = g†gg†g − g†g = 0

�
PHm�PHm = 0∀m. (B56)

Thus in particular

〈
�

∣∣∣∣∣∣

∑

1≤ j1, j2, j4≤s

c j1a†
j1

a†
j1+s

n j2

(
a†

j2
a j2 + a†

j2+sa j2+s

)
a j4a j4+s c j4 �

〉
= 0

∀�,� ∈ H3. (B57)

Letting

|�〉 = |�〉 = ∣∣ϕ jϕ j+sϕk
〉

(B58)

one obtains

0 =
〈
ϕ jϕ j+sϕk

∣∣∣∣∣∣

∑

1≤ j1, j2, j4≤s

c j1 a†
j1

a†
j1+s

n j2

(
a†

j2
a j2 + a†

j2+sa j2+s

)
a j4 a j4+s c j4ϕ jϕ j+sϕk

〉

=
∑

1≤ j1, j2, j4≤s

c j1 c j4 n j2

{〈
ϕ jϕ j+sϕk

∣∣∣a†
j1

a†
j1+s

a†
j2

a j2 a j4 a j4+s ϕ jϕ j+sϕk

〉

+
〈
ϕ jϕ j+sϕk

∣∣∣a†
j1

a†
j1+s

a†
j2+sa j2+sa j4 a j4+s ϕ jϕ j+sϕk

〉}
= n j nk

(
1 − δ jk − δ( j+s)k

)
.

(B59)

Thus

n j n|k| = 0 j = k ; 1 ≤ j ≤ s, 1 ≤ k ≤ 2s, (B60)

i.e.

n1n2 = n1n3 = · · · = n1ns = 0

n2n1 = n2n3 = · · · = n2ns = 0, (B61)
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where

|k| =
{

k if k ≤ s
k − s if k > s

. (B62)

One can then see from Eq. B61 that all but one of the occupation numbers must be
zero and the one that isn’t must equal one, thus the rank of the geminal creator g†

must be 1. ��

Mixed case

The general case concerns projectors of the form

λ = λ1 + λ2, (B63)

which is handled by considering:

Q projectors

Using the particle-hole transformation

a† → a (B64)

of the Fock algebra and the preceding lemmas and theorem one can see that all
projectors formed from two electron hole operators must be of the form

A† A, (B65)

where

A = b†a†, (B66)

i.e.

A† A = abb†a†, (B67)

which is a projector as

(
abb†a†

)2 = abb†a†abb†a† = abb†
(

1 − aa†
)

bb†a†

= abb†bb†a† − abb†aa†bb†a† = ab
(

1 − bb†
)

b†a† = abb†a†.

(B68)

Noting that

abb†a† = IHF − a†a − b†b + a†b†ba = IHF −	, (B69)
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where

	 = a†a + b†b − a†b†ba (B70)

one has

IHF −	 = (IHF −	
)2 = IHF − 2	+	2, (B71)

which shows that

	2 = 	, (B72)

i.e.

	 = a†a + b†b − a†b†ba (B73)

are projectors that belong to B (HF )1 ⊕ B (HF )2 and lead to the generalized Q-
Conditions.

G projectors

The generalized G-Condition is based on the product

A† A, (B74)

where

A = b†a, (B75)

i.e.

A† A = a†bb†a = a†
(

IHF − b†a
)

a = a†a − a†b†ba = na − nanb

= na (1 − nb) . (B76)

The operator a†a − a†b†ba is a projector as

na (1 − nb) na (1 − nb) = na (1 − nb)
2 = na (1 − 2nb + nb) = na (1 − nb)

(B77)

and

a†a − a†b†ba ∈ 	2. (B78)
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Two electron commutation relationships

The commutator

[
a†

k1
a†

k2
, a j2 a j1

]
(C1)

is evaluated by bringing a j4a j3a†
j1

a†
j2

to normal form as

a j2 a j1a†
k1

a†
k2

= a j2

(
δ j1k1 − a†

k1
a j1

)
a†

k2
= a j2 a†

k2
δ j1k1 − a j2 a†

k1
a j1a†

k2

=
(
δ j2k2 − a†

k2
a j2

)
δ j1k1 −

(
δ j2k1 − a†

k1
a j2

) (
δ j1k2 − a†

k2
a j1

)

= δ j2k2δ j1k1 − a†
k2

a j2δ j1k1 − δ j2k1δ j1k2 + a†
k1

a j2δ j1k2 + a†
k2

a j1δ j2k1

−a†
k1

a j2 a†
k2

a j1

= δ j2k2δ j1k1 − δ j2k1δ j1k2 − a†
k2

a j2δ j1k1 + a†
k1

a j2δ j1k2 + a†
k2

a j1δ j2k1

−a†
k1

(
δ j2k2 − a†

k2
a j2

)
a j1

= δ j2k2δ j1k1 − δ j2k1δ j1k2 − a†
k2

a j2δ j1k1 + a†
k1

a j2δ j1k2 + a†
k2

a j1δ j2k1

−a†
k1

a j1δ j2k2 + a†
k1

a†
k2

a j2 a j1 (C2)

giving

a j2 a j1a†
k1

a†
k2

= IHF δ j2k2δ j1k1 − IHF δ j2k1δ j1k2 − a†
k2

a j2δ j1k1

+ a†
k1

a j2δ j1k2 + a†
k2

a j1δ j2k1 − a†
;k1

a j1δ j2k2 + a†
k1

a†
k2

a j2 a j1 ,

(C3)

and thus

[
a†

k1
a†

k2
, a j2 a j1

]
= IHF δ j2k1δ j1k2 − IHF δ j2k2δ j1k1 + a†

k2
a j2δ j1k1 − a†

k1
a j2δ j1k2

−a†
k2

a j1δ j2k1 + a†
k1

a j1δ j2k2 . (C4)

Second quantization map

By considering the restrictions of a†
j to HN , i.e. a†

j PHN , for 0 ≤ N ≤ ∞ one obtains

a†
j = ∣∣ϕ j

〉 〈φ| +
∑

1≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕ jϕ j1 . . . ϕ jN

〉 〈
ϕ j1 . . . ϕ jN

∣∣

=
∑

0≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕ jϕ j1 . . . ϕ jN

〉 〈
ϕ j1 . . . ϕ jN

∣∣

123



J Math Chem (2012) 50:455–491 489

= ∣∣ϕ j
〉 〈φ| ∧

∑

0≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕ j1 . . . ϕ jN

〉 〈
ϕ j1 . . . ϕ jN

∣∣

= ∣∣ϕ j
〉 〈φ| ∧

∑

0≤N≤∞
PHN = ∣∣ϕ j

〉 〈φ| ∧ IHF . (D1)

thus one can define the second quantization map �

� : F → F (D2)

from the Fock algebra to itself by

�
(∣∣ϕ j

〉 〈φ|) = a†
j = ∣∣ϕ j

〉 〈φ| ∧ IHF . (D3)

Thus annihilators can be expressed in an analogous fashion by

a j = |φ〉 〈ϕ j
∣∣+

∑

1≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕ j1 . . . ϕ jN

〉 〈
ϕ jϕ j1 . . . ϕ jN

∣∣

=
∑

0≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕ j1 . . . ϕ jN

〉 〈
ϕ jϕ j1 . . . ϕ jN

∣∣ . (D4)

and

a j = �
(|φ〉 〈ϕ j

∣∣) = |φ〉 〈ϕ j
∣∣ ∧ IHF .

In a similar fashion

a†
l1

am1 = �
(∣∣ϕl1

〉 〈
ϕm1

∣∣)

=
∑

0≤N ,M≤∞
1≤ j1<···< jN ≤∞
1≤k1<···<kM ≤∞

∣∣ϕl1ϕ j1 . . . ϕ jN

〉 〈
ϕ j1 . . . ϕ jN

∣∣ϕk1 . . . ϕkM

〉 〈
ϕm1ϕk1 . . . ϕkM

∣∣

=
∑

1≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕl1ϕ j1 . . . ϕ jN

〉 〈
ϕm1ϕ j1 . . . ϕ jN

∣∣ = ∣∣ϕl1

〉 〈
ϕm1

∣∣ ∧ IHF .

(D5)

and

a†
l1

a†
l2

am2 am1 = �
(∣∣ϕl1ϕl2

〉 〈
ϕm1ϕm2

∣∣)

=
∑

0≤N ,M≤∞
1≤ j1<···< jN ≤∞
1≤k1<···<kM ≤∞

∣∣ϕl1ϕl2ϕ j1 . . . ϕ jN

〉 〈
ϕ j1 . . . ϕ jN

∣∣ϕk1 . . . ϕkM

〉 〈
ϕm1ϕm2ϕk1 . . . ϕkM

∣∣

=
∑

1≤N≤∞

∑

1≤ j1<···< jN ≤∞

∣∣ϕl1ϕl2ϕ j1 . . . ϕ jN

〉 〈
ϕm1ϕm2ϕ j1 . . . ϕ jN

∣∣

= ∣∣ϕl1ϕl2

〉 〈
ϕm1ϕm2

∣∣ ∧ IHF . (D6)
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One should note that in general

� (A) � (B) = � (A ∧ B) = � (AB) , (D7)

so � is not an algebraic map.

States of a fixed number of electrons

Theorem 4 A state f is a N electron state iff f (N1) = N and f (N2) = (N
2

)
i.e.

f (N1) = N and f (N2) = (N
2

)⇔ f
(
(N1)

2) = f (N1)
2 = N 2

Proof In the following we use the operator identity
(N1

)2 = N1 + 2N2.

If

f (N1) = N and f (N2) =
(

N

2

)
(E1)

then

f (N1 + 2N2) = f
(
N 2

1

)
= N + 2N (N − 1)

2
= N 2 = f (N1)

2 (E2)

thus f is a pure N -electron state. The only if part is trivial as f (N1)
2 = N 2 clearly

implies that f (N1) = N and f (N2) = (N
2

)
. ��
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